

DC Current Sensor CYCT04-LTAD

This current sensor series is based on magnetic modulation principle and has good stability for measuring 1A~100A DC current and high isolation between primary current and secondary output signal. This sensor can be used for measurement of DC currents.

Product Characteristics

- Excellent accuracy
- Very good linearity
- Less power consumption
- Window structure
- Electrically isolating the output of the transducer from the current carrying conductor
- No insertion loss
- Current overload capability

Applications

- Various power supply
- · Communication systems
- Leakage current measurement
- Numerical controlled machine tools
- Current difference measurement
- Electric circuits measurement
- Microcomputer monitoring
- Electric power network monitoring

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

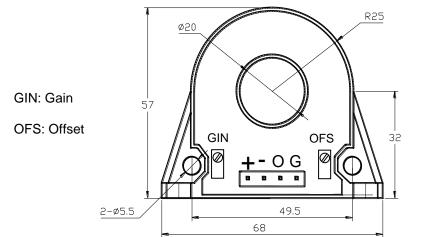
Electrical Data

Primary Nominal Current <i>I_r</i> (A)	Measuring Range (A)	Output Voltage (V)	Aperture Diameter (mm)	Part number
Current I _r (A)		voltage (v)	Diameter (min)	0)/07041740044
1	± 2			CYCT04-LTAD01A
5	±10			CYCT04-LTAD05A
10	±20	5 ±0.5%	Ø20.0	CYCT04-LTAD10A
20	± 40			CYCT04-LTAD20A
30	± 60			CYCT04-LTAD30A
40	± 80			CYCT04-LTAD40A
50	± 100			CYCT04-LTAD50A
60	± 120			CYCT04-LTAD60A
75	± 150			CYCT04-LTAD75A
100	± 200			CYCT04-LTAD100A

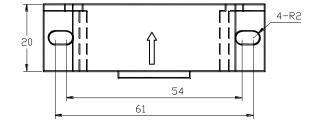
The primary nominal current can be selected between 1A und 100A DC

Supply Voltage V_{cc} = ±15V ± 5% Current Consumption I_c < 20mA Galvanic Isolation, 50/60Hz, 1min: 5.0kV Isolation resistance @ 500 VDC > 500 M Ω

Accuracy and Dynamic performance data


Accuracy at I_r , T_A =25°C (without offset), $X < \pm 0.5\%$ Linearity from 0 to I_r , T_A =25°C, $E_L < 0.2\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} < \pm 10$ mV Thermal Drift of Offset Voltage, $V_{ot} < \pm 0.5$ mV/°C Response Time at 90% of I_P (f=1k Hz) $t_r < 20$ ms

General Data


Ambient Operating Temperature, Ambient Storage Temperature,

 $T_A = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +125^{\circ}\text{C}$

PIN Definition and Dimensions

Terminal +: +15V, Terminal -: -15V, Terminal O: Output, Terminal G: ground

Notes:

- 1. Connect the terminals of power source, outputs respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with primary cable (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

http://www.cy-sensors.com