

AC Leakage Current Sensor CYCS11-xnL20

This current sensor is based on magnetic modulation and compensation principle, and can be used for measurement of small AC current and leakage current, current difference between two or more conductors.

Product Characteristics:

- Application of Computer Aided Ageing Technology
- 100% Ageing Processing and Thermal Drift Test under high operating temperature in order to guarantee the long term stability of the sensors
- Custom makeable according to individual requirements
- Various current and voltage outputs are selectable
- Power supply options: +12VDC, +15VDC and 24VDC etc.
- Sensors with window for contactless measurements

Applications:

- Isolation Monitoring of AC power systems and cable selection systems,
- Measurements of small AC currents and leakage currents etc.

Electrical Data

Measuring range M	10mA ~ 1A AC		
Linearity range	1.2 x M (measuring range)		
Nominal output signals	0-5V, 0-10V, 4-20mA DC		
Supply voltage	+12VDC, +15VDC, +24VDC		
Current consumption	20mA + output current		
Galvanic isolation	2.5KV RMS/50Hz/ 1min		
Measuring resistance for current output	≤250Ω		

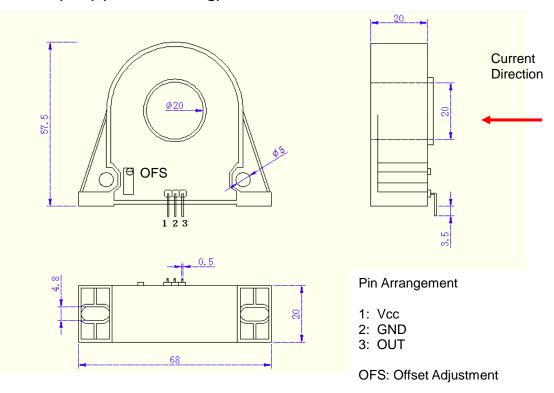
Thermal drift of zero offset	-25°C~+70°C	300	-40°C~+80°C	400	ppm/°C
Response time	≤120			ms	
Accuracy	±1.0			%	
Linearity	≤0.5			%FS	
Electric Offset Voltage, TA=25°C	25			mV	
Magnetic Offset Voltage (I _P =0)	20			mV	

General Data

Operating temperature	-40 ~ +85	°C
Storage temperature	-40 ~ +85	°C
Window size	Ф20	mm
Case dimensions H x L x W	68 x 57 x 24	mm

Definition of Part number:

CYCS11	-	х	n	L20	-	1.0	-	М
(1)		(2)	(3)	(4)		(5)		(6)

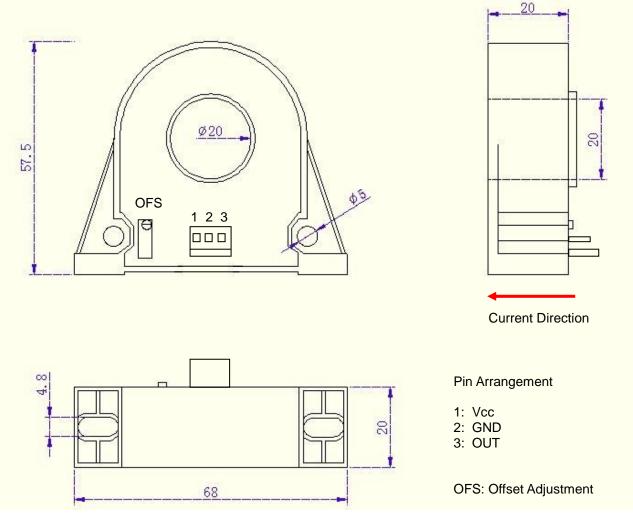

(1)	(2)	(3)	(4)	(5)	(6)
Series name	Output signal	Power supply	Case style	Accuracy	Rated Input current (m)
CYCS11	x=3: 0-5V DC x=8: 0-10V DC x=5: 4-20mA DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC	M20A With aperture Ø20mm	1.0%	m = 10mA, 20mA, 50mA,100mA,200mA, 500mA, 1A

Example 1:CYCS11-34L20-1.0-1A, AC Current sensor with
Output signal: 0-5V DC
Power supply: +24V DC•Rated input current: 0-1A ACExample 2:CYCS11-54L20-1.0-1A, AC Current sensor with
Output signal: 4.20m A DC

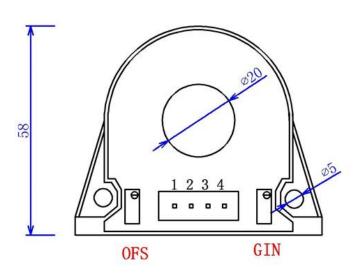
Output signal: 4-20mA DC Power supply: +24V DC

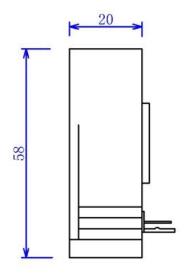
Rated input current: 0~ 1AAC

DIMENSIONS (mm) (PCB Mounting)


Markt Schwabener Str. 8 D-85464 Finsing Germany

Chen Y ang Technologies GmbH & Co KG


By Using 3 Pins MOLEX Connector



Chen Y ang Technologies GmbH & Co KG

By Using 4 Pins Phoenix Connector

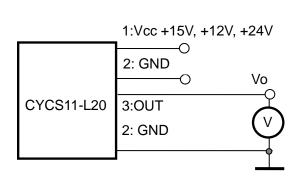
68

Pin Arrangement

- 1. Vcc
- 2. Not connected
- 3. Out
- 4. GND

OFS: Offset Adjustment GIN: Gain Adjustment

Markt Schwabener Str. 8 D-85464 Finsing Germany

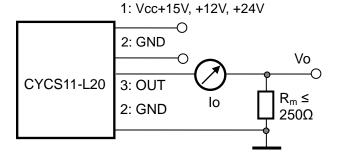


CONNECTIONS

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

a) Voltage Output

1: Vcc +15V, +12V, +24V 2: GND 3: OUT



Relation between Input and Output:

Sensor CYCS11-34L20-1.0-U1A				
Input current (A)	Output voltage (V)			
0	0			
0.25	1.25			
0.5	2.5			
0.75	3.75			
1	5			

b) Current Output

- 1: Vcc +15V, +12V, +24V
- 2: GND
- 3: OUT

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYCS11-54L20-1.0-U1A				
Input current (A)	Output current Io(mA)	Output voltage Vo (V)		
0	4	1		
0.25	8	2		
0.5	12	3		
0.75	16	4		
1	20	5		

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with current carrying conductor.
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.